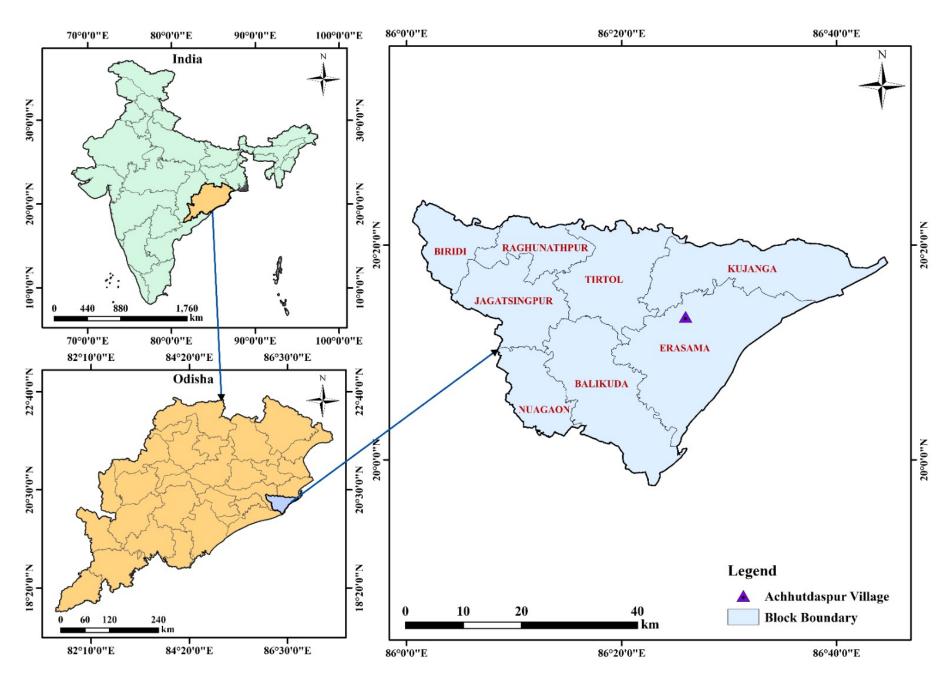
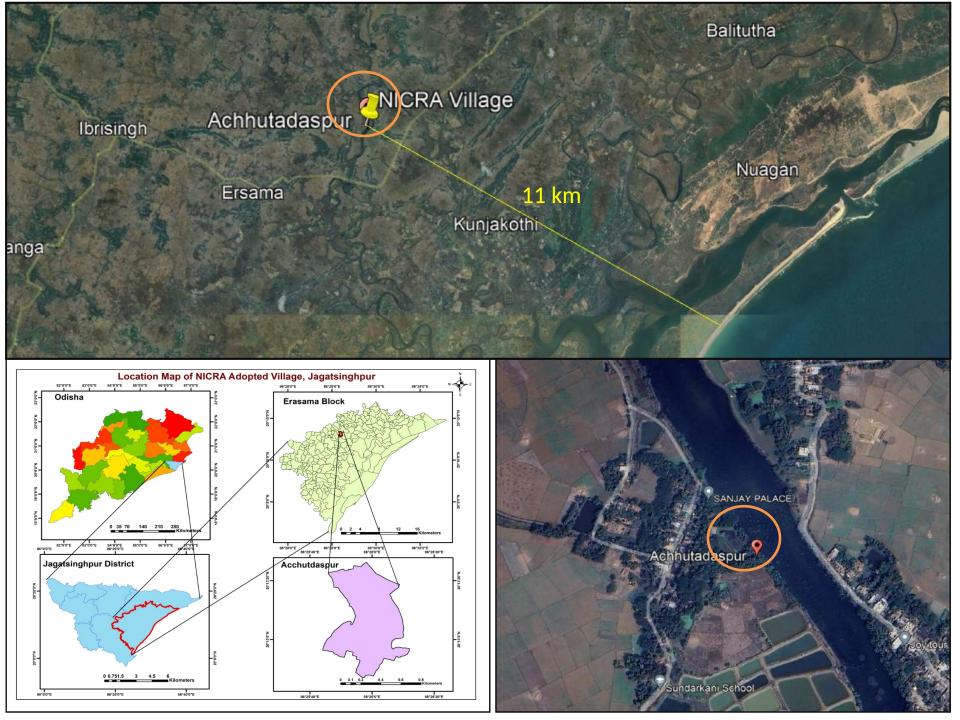
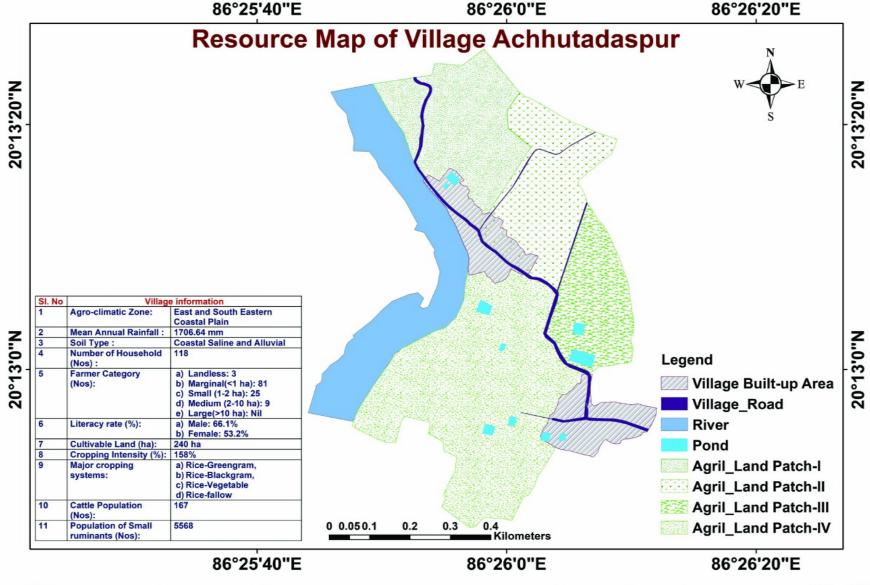
KVK-JAGATSINGHPUR

Technology Demonstrations in Jagatsinghpur District of Odisha

Impact and performance of NICRA interventions taken up during kharif & rabi (2021 to 2025)

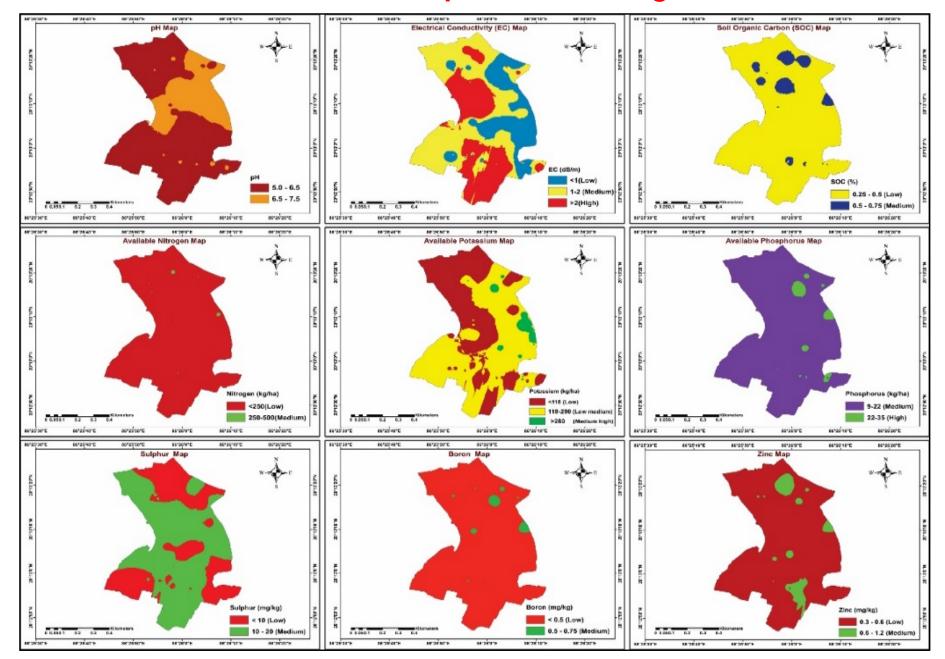






Krishi Vigyan Kendra, Jagatsinghpur Odisha University of Agriculture & Technology, Bhubaneswar Technology Demonstration component of NICRA

Location Map of NICRA Village



Soil nutrient Map of NICRA Village

Details about the villages involved in the programme

U	etails about the villages involved in the	programme
S.No	Details	Village 1
1	Name of the village adopted	Achhutadaspur
2	Involved in TDC-NICRA since (year)	2021
3	Retreating of TDC-NICRA programme (year)	5 th
4	Cultivated area (ha)	250
5	Area covered under TDC-NICRA	200
6	Flood/Submergence prone Area (ha)	152
7	Drought affected area (ha)	240
8	No. of households in the village	118
9	No. of households covered under TDC- NICRA	105
10	No. of farmers in the village (Men +Women)	291 (164+127)
11	No. of farmers covered under TDC-NICRA	239 (134+105)

11

(Men +Women)

Rainfall characteristics and stress experienced

	Nov	and wear	Stress year (mention the year/ years)					
Parameters Parameters	Nor	mal year	I	Prought	-	Flood		
	Year	Parameters	Year	Parameters	Year	Parameters		
Annual rainfall (mm)	2022	1529.60	2023	1106.51	2021	2433.31		
Total <i>kharif</i> rainfall	2022	1247.92	2023	790.23	2021	1350.85		
Total <i>rabi</i> rainfall	2022	169.07	2023	198.87	2021	662.41		
No. of rainy days (>2.5 mm)	2022	81	2023	74	2021	98		
No. of dry spells during kharif season (mention dates)	2022	01 (04-06-22 to 14-06-22)	2023	02, 06.10.2023 to 22.10.2023 & 25.10.2023 to 04.11.2023	2021	NA		
Duration of dry spells	2022	11 Days	2023	17 Days, 11 Days	2021	NA		
No. of intensive rains > 60 mm (mention dates)	2022	03 Nos 17-07-22, 14-08-22, 24-08-22	2023	02 Nos 15-07-23, 14-09-23,	2021	04 Nos 25-05-21, 26-05-21, 23-06-21, 23-07-21		
Quantity of rainfall received (mm)	2022	80.64, 82.83, 86.84, 61.87	2023	91.11, 64.14	2021	131.77, 194.19, 69.55, 105.39		

Rainfall characteristics and stress experienced

		NT		Stress year (mention the year/ years)					
Parameters		Normal year		Drought		Flood			
	Year	Parameters	Year	Parameters	Year	Parameters			
Number of heat waves experienced	2022	3	2023	5	2021	4			
Heat waves (Date and duration)Tmax >35°C for two consecutive days	2022	23-04-22 to 29-04-22 (7 days), 20-05-22 to 21-05-22 (2 days), 28-05-22 to 29-05-22 (2 days),	2023	10-04-23 to 20-04-23 (11 days), 07-05-23 to 11-05-23 (5 days), 14-05-23 to 25-05-23 (12 days) 29-05-23 to 09-06-23 (12 days) 11-06-23 to 18-06-23 (8 days)	2021	24-03-21 to 25-03-21 (2 days), 29-03-21 to 01-04-21 (4 days), 24-04-21 to 27-04-21 (4 days) 17-05-21 to 19-05-21 (3 days)			
Number of cold waves experienced,Tmin <15° C for two consecutive days	2022	6	2023	4	2021	4			
Cold waves (Date and duration)	2022	02-01-22 to 06-01-22 (5 days), 08-01-22 to 09-01-22 (2 days), 17-01-22 to 20-01-22 (4 days), 28-01-22 to 31-01-22 (4 days), 18-12-22 to 20-12-22 (3 days), 23-12-22 to 24-12-22 (2 days)	2023	06-01-23 to 12-01-23 (7 days), 03-02-23 to 05-02-23 (3 days), 12-12-23 to 13-12-23 (2 days), 16-12-23 to 22-12-23 (7 days)	2021	16-01-21 to 18-01-21 (3 days), 31-01-21 to 06-02-21 (7 days), 08-02-21 to 10-02-21 (3 days), 15-12-21 to 25-12-21 (11 days)			

Vulnerabilities in different seasons and stage of crop affected

Major Vulnerability	Year	r i valati, i cron		No of days	Contingency measures adopted	Impact (Farmers and other stakeholder perception)
Drought	2023	Kharif	Panicle initiation	28	Supplemental irrigation, potash spray	Farm pond users saved crop; 20-30% higher yield
Flood	2021	Kharif	Tillering & vegetative	8	Submergence- tolerant rice, drainage/bio- drainage	Crop loss reduced; quick recovery after replanting.
Heat stress	2023	Rabi	Flowering & pod filling	6	Sprinkler irrigation, KNO₃ spray	Reduced flower drop and better pod setting.

Vulnerabilities in different seasons and stage of crop affected

Submergence condition Rice crop damaged by Flash flood condition during tillering stage

Submergence condition

Most Promising climate resilient Technologies Identified

				Climate resilient technologies identified						
Module	S.N	Climate constraint s	Farmers practice	Rainfed without animal (FST- 1)	Rainfed with animal (FST-2)	Irrigated without animal (FST-3)	Irrigated with animal (FST-4)			
	1	Drought/ Flood		Water harvesting in farm pond & supplemental irrigation	Water harvesting in farm pond & Supplement al irrigation	Micro irrigation and mulching	Micro- irrigation and mulching			
NRM	2	Salinity	Local rice var. Raspanjar	-	Green manuring in Dhanicha & Deep ploughing/ INM	-	-			
	3	Submerge nce	Field to field drainage	Drainage facility with field drains & Hume pipe	-	Raised bed and Ridge and furrow systems	-			

Most Promising climate resilient Technologies Identified

				Climate resilient technologies identified						
Module	S.N	Climate constraint s	Farmers practice	Rainfed without animal (FST- 1)	Rainfed with animal (FST-2)	Irrigated without animal (FST-3)	Irrigated with animal (FST-4)			
	Submerge nce Sarala & Pooja		Submergence tolerant rice varieties Swarna sub-1 & CR 1009 sub-1			-				
Crop	2	Salinity	Local salt tolerant rice var. Raspanjar	Coconut planation	Salt tolerant rice varieties and Coconut	Coconut & Arecanut	Coconut & Arecanut			
	Water		Local Varieties	Short-duration pulses	-	Vegetables like Okra with drip	Micro- irrigation Coconut & Arecanut			

Most Promising climate resilient Technologies Identified

				Climate resilient technologies identified						
Module	S.N	Climate constraint s	Farmers practice	Rainfed without animal (FST-1)	Rainfed with animal (FST-2)	Irrigated without animal (FST-3)	Irrigated with animal (FST-4)	Other predomin ant system (Landless labour)		
	1	Drought	Improper feed availability; local breed	-	Backyard Poultry- Aseel / Cattle shed Renovation + Hybrid Napier	-	Cattle shed+ Hybrid Napier	-		
Lives tock	2	Submerg ence	-	-	Fishery (IMC) & Duckery	-	Duckery	-		
	3	Heat Stress	-	-	Improved housing with ventilation cows	-	Improved housing with ventilation	-		

FST Scenarios

FST No.	Scenario	Problem	Interventions
FST 1	Rainfed without Animal	Submergence in Kharif and moisture stress in Rabi Season	Submergence tolerant Rice varieties in Kharif+ Drainage Facility + short duration greengram variety+ Supplemental irrigation from Farm
FST 2	Rainfed with Animal	Soil Salinity, Moisture stress in Rabi and Heat stress in summer	Deep Ploughing +Green Manuring+ Saline Tolerant Rice Varieties+ INM+ Supplemental irrigation from farm pond+ Resilient Poultry Breed+ Renovation of Cattle Shed+ Fodder bank for animals+ Coconut Plantation
FST 3	Irrigated without animal	Limited irrigation in Rabi	Sprinkler Irrigation+IPM
FST 4	Irrigated with animal	Limited irrigation in Rabi	Drip irrigation and mulching in vegetables +INM+Duckery

Climate stress	Climate resilient technology	Crop/ croppin	NIC	NICRA farmers			Farmers Practice			
		g system	Productiv ity (kg ha ⁻	COC (₹ ha ⁻¹)	Gross returns (₹ ha ⁻¹)	Productivit y (kg ha ⁻¹)	COC (₹ ha⁻¹)	Gross returns (₹ ha ⁻¹)	impact (% Resilie nce)	
		Normal ye	ear (Averago	e of norn	nal years)		•			
Submer gence	Submergence Tolerant var. Swarna Sub-1	Rice	4800 (23%)	60000	110400	3900	58000	89700		
Submer gence	Var. CR 1009 Sub-1	Rice	4680 (21.5%)	60000	107640	3850	58000	88550		
Moistur e stress in rabi	Swarna Sub-1 in <i>kharif</i> and Short duration variety: Virat in <i>rabi</i>	Rice- Greengra m	6876 (Eq. Yield) 21.9%	90000	158151	5640	82000	129637.2		
	•	Stress yo	ear (Averago	e of stres	s years)	•		•		
Submer gence	Submergence Tolerant var.Swarna Sub-1	Rice	4500 (25%)	60000	103500	3600	58000	82800	93.7	
Submer gence	CR 1009 Sub-1	Rice	4400 (29.4%)	60000	101200	3400	58000	78200	95.6	
Moistur e stress in rabi	Swarna Sub-1 in <i>kharif</i> and Short duration variety: Virat in <i>rabi</i>	Rice- Greengra m	6010 (Eq. Yield)	90000	138228	5070	82000	116659.8	87.3	

(Rainfed without Animal CR 1009 Sub-1

Short duration greengram variety (Virat)

Crop Cutting in CR 1009 Sub-1

Farm pond Renovation

After

(Rainfed without Animal)

New Pond Construction

Drainage Facility

Clima	Climate	Crop/	NIC	CRA farm	ers	Fa	rmers Pr	actice	CRT		
te stress	resilient technology	cropping system	Productiv ity (kg ha ⁻¹)	COC (₹ ha ⁻	Gross returns (₹ ha ⁻¹)	Productiv ity (kg ha ⁻¹)	CO C (₹ ha ⁻¹)	Gross returns (₹ ha ⁻¹)	impact (% Resilie nce)		
	Normal year (Average of normal years)										
Salinit y	Green manuring with Dhanicha	1. Rice	4450	61000	102,350	3350	51000	77,050			
	Salt tolerant var. Luna Suverna	2. Rice	3750	58500	86,250	3160	49000	72,680			
	INM	3.Greengr am	570	30000	49,487	470	24500	40,805			
		Str	ess year (Ave	erage of st	ress years)						
Salinit y	Green manuring with Dhanicha	1. Rice	4100	60000	94,300	3110	51000	71,530	92.13		
	Salt tolerant var. Luna suverna	2. Rice	3400	58500	78,200	2950	49000	67,850	90.66		
	INM	3.Greengr am	450	26000	39,069	350	24500	30,387	78.94		

Green manuring with Dhanicha

Distribution of Soil Health Card

Green manuring with Dhanicha

Visit of ICAR-CRRI scientists to Luna Ambiki

Field day on Salt tolerant variety of rice

Luna Barihal Luna Ambiki Luna Suvarna

Clima	Climate	Crop/	NIC	CRA farm	ers	Fa	CRT				
te resilient technology		cropping system	Productiv ity (kg ha ⁻¹)	COC (₹ ha ⁻	Gross returns (₹ ha ⁻¹)	Productiv ity (kg ha ⁻¹)	CO C (₹ ha ⁻¹)	Gross returns (₹ ha ⁻¹)	impact (% Resilie nce)		
	Normal year (Average of normal years)										
Nutrie nt stress	Sparing of Nano DAP in Drone	Greengra m	725	31500	62944	450	27500	39069			
		Str	ess year (Ave	erage of st	ress years)						
Nutrie nt stress	Sparing of Nano DAP in Drone	Greengra m	640	31500	55564	410	27500	35596	88.27		

Climate	Climate resilient	Animal		NICRA		Far	mers Pr	actice	CRT
stress	technology (Breed change/ Shelter management/ Nutrition/ Fodder)	species	Production /Year	COP* (₹ Animal ⁻	Gross returns (₹ Animal ⁻¹)	Producti on /Year	COP (₹ Animal ⁻	Gross returns (₹ Animal ⁻¹)	impact (% Resilien ce)
			Nor	mal year		•	•		
Heat Stress	Backyard Poultry : Assel	Poultry Birds	68.4 kg /60 number year, 5% mortality / year (1.3 kg/ bird)	Rs 150/ bird	Rs 260/ bird (Rs 200/kg) Rs 14,820/ year	47 kg 1.0 kg/bird With 22% mortali ty	120/ bird	Rs 200/bird Rs 9,400/ye ar	
			Str	ess year					
Heat Stress	Backyard Poultry : Assel	Poultry Birds	51 kg (0.9 kg/ bird)	Rs 150/ bird	Rs 180/ bird	37.6 kg 0.8 kg/bird	120/ bird	Rs 160/ bird	74.5%

Apiary unit

(Rainfed with Animal)

Apiary unit

Poultry Brooding Unit

Backyard Poultry

Climate Climate Animal		NICRA			Farı	CRT			
stress	resilient technology (Breed change/ Shelter management/ Nutrition/ Fodder)	species	Productio n /Year	COP* (₹ Animal	Gross returns (₹ Animal ⁻¹)	Produc tion /Year	COP (₹ Animal ⁻¹)	Gross return s (₹ Anima l ⁻¹)	impact (% Resilie nce)
			Nori	mal year	•				
Subm ergenc e/Dro ught	Use of Community Pond	IMC cultur e	2100	1,20,00	2,10,000	1600	1,10,000	1,60,00 0	
	Stress year								
Subm ergenc e/Dro ught	Use of Community Pond	IMC cultur e	1700	1,10,00	1,70,000	1000	1,00,000	1,00,00	80.9

Fishery (Rainfed with Animal)

Visit of Zonal High-Level Committee to fishery unit in NICRA Adopted Village

Benefits obtained l	by introdu	ction of livest	ock with crops

	System benefit	Cost of production	Gross returns	Net returns	В:С
1	Crop alone	61000	102,350	41350	1.67
2	Crop + livestock	69500	128,570	59,070	1.84

Impact of promising CRTs on crops in FST-3 (Irrigated without animal)

Climate	Climate resilient	Crop/ cropping	NICF	RA farm	ers	Far			
34 633	technology	system	Productivi ty (kg ha ⁻¹)	COC (₹ ha ⁻	Gross returns (₹ ha ⁻¹)	Producti vity (kg ha ⁻¹)	COC (₹ ha ⁻¹)	Gross return s (₹ ha ⁻¹) Gross return s (₹ ha ⁻¹)	CRT impact (% Resilien ce)
	,	Normal	year (Averag	e of nor	mal years)	•		•	
Moistur e stress	Sprinkler irrigation	Greengra m	600	30000	52,092.0	490	26000	42,542	
	IPM (Neem oil spraying, Yellow and Blue stick trap @10/acre, Trichogramma Chilonis@2/acr e)	Greengram	580	27000	50,355. 6	500	24000	51,224	
		Stress	year (Averag	ge of stre	ss years)				
Moistur e stress	Sprinkler irrigation	Greengra m	470	30000	40,805	400	26000	34,728	78.3
	IPM	Greengram	450	27000	39,069	390	24000	33,860	77.6

Sprinkler irrigation in Greengram

Micro-irrigation in vegetables

Visit of Zonal High-Level Committee to Micro-irrigation unit in vegetables

IPM in Greengram

IPM in Greengram

Impact of promising CRTs in FST-4 (Irrigated with animal)

Climat	Climate	NICRA	NICRA farmers			Farmers Practice			
e stress	resilient technology	croppi ng system	Productivity (kg ha ⁻¹)	COC (₹ ha ⁻	Gross retur ns (₹ ha ⁻¹)	Product ivity (kg ha ⁻¹)	COC (₹ ha ⁻¹)	Gross returns (₹ ha ⁻¹)	CRT impact (% Resilien ce)
		Normal	year (Av	erage of 1	normal ye	ears)		-	
Water Stress in Rabi	Drip Irrigation	Okra	12000	70000	12000	9700	73000	97000	
Low fertility	INM	Greeng ram	590	27000	51,224	520	26000	45,146	
		Stress	year (Av	erage of s	stress yea	rs)			
Water Stress in Rabi	Drip Irrigation	Okra	10900	70000	10200	9200	73000	89000	90.83
Low fertility	INM	Greeng ram	550	27000	47,751	500	26000	43,410	93.22

Impact of promising CRTs in FST-4 (Irrigated with animal)

Clima	Climate	Anima		NICF	RA	Farmers Practice			CRT
te stress	resilient technology (Breed change/ Shelter management/ Nutrition/ Fodder)	l specie s	Product ion /Year	COP * (₹ Ani mal 1)	GMR (₹/Animal) Gross returns (₹ Animal ⁻¹)	Pro duc tion /Ye ar	COP (₹ Animal	Gross return s (₹ Anim al ⁻¹)	impact (% Resilien ce)
	•	•	Nori	nal yea	<u>r</u>	•	•		
Water Stress	Khaki Campbell	Duck (30 Nos/Y ear)	30 kg duck meet & 3000 eggs/yea r	250/ duck	Rs 400/duck (Rs 200/kg) 6000 meat+18000 = 24000				
Stress year									
Water Stress	Khaki Campbell	Duck	20 kg meat +2000 egg	200/ duck	Rs 300 /duck (4000+12000 = 16000)				66.6

INM in Greengram Irrigated with animal INM in Greengram

Micro-irrigation in vegetables

Drip irrigation in coconut & Arecanut

Irrigated with animal

Cattleshed renovation

Duck rearing

Cattleshed renovation

Impact of promising CRTs in FST-4 (Irrigated with animal)

Benefits obtained by introduction of livestock with crops

	System benefit	Cost of production	Gross returns	Net returns	B:C
1	Crop alone	70000	120000	50000	1.7
2	Crop + livestock	77500	144000	66500	1.85

Hybrid Napier along the river Bank

Hybrid Napier along the river Bank

Input supplied to the field

		NIC	CRA Farmers		Farmers	Practice	Cost of input
S.No	CRT	Input	Input Qty	Input cost (₹)	Input Qty	Input cost (₹)	saved with NICRA (₹)
		Fertilizer (kg)	500 kg	5000	600 kg	6000	1000
		Water (Litre)					
	Demonstrati	Labour (man days)	110	44000	120	48000	4000
$\begin{bmatrix} 1 \end{bmatrix}$	on on Flood	Pesticide (kg or L)		1000		2000	1000
	Tolerant Rice Variety	Seed (kg)	40 kg	1600	60 kg	2400	8000
	Rice variety	Feed (q)					
		Compost (t)	5 ton/ha	4500	2 ton/ha	2000	
		Fertilizer (kg)	3 kg 19:19:19	600			
	Demonstrati	Water (Litre)	1 sprinkler irrigation	1000			
•	on on Short duration	Labour (man days)	45	18000	50	20000	2000
2	variety:	Pesticide (kg or L)		1000		1500	500
•	Virat	Seed (kg)	25 kg	2500	30 kg	3000	5 kg
		Feed (q)					
		Compost (t)					
		Fertilizer (kg)	400 kg	4000	600 kg	6000	2000
	.	Water (Litre)					
	Demonstrati on on green	Labour (man days)	110	44000	115	46000	2000
3	manuring	Pesticide (kg or L)		2000		2000	0
	with	Seed (kg)	40 kg	1600	60	2400	800
	Dhanicha	Feed (q)					

Input supplied to the field

		NIC	RA Farmers		Farme	rs Practice	Cost of input
S.No	CRT	Input	Input Qty	Input cost (₹)	Input Qty	Input cost (₹)	saved with NICRA (₹)
		Fertilizer (kg)	500 kg	5000	600 kg	6000	1000
		Water (Litre)					
	Demonstrati	Labour (man days)	110	44000	115	46000	2000
4	on on Salt	Pesticide (kg or L)		1000		2000	1000
	Tolerant Rice Variety	Seed (kg)	40 kg	1600	60 kg	2400	800
	Rice variety	Feed (q)					
		Compost (t)	5 ton/ha	4500	2 ton/ha	2000	
		Fertilizer (kg)	3 kg 19:19:19	600			
	IDM :	Water (Litre)	1 sprinkler irrigation	1000			
5	IPM in Greengram,	Labour (man days)	45	18000	50	20000	2000
	Greengram,	Pesticide (kg or L)		1500		2000	500
		Seed (kg)	25 kg	2500	30 kg	3000	500
		Feed (q)					
		Compost (t)					
		Fertilizer (kg)	3 kg 19:19:19	600			
	Demonstrati	Water (Litre)	1 sprinkler irrigation	1000			
6	on on Sprinkler	Labour (man days)	45	18000	50	20000	2000
	irrigation in	Pesticide (kg or L)		1000		1500	500

Input supplied to the field

		NIC	CRA Farmers		Farme	rs Practice	Cost of input
S.No	CRT	Input	Input Qty	Input cost (₹)	Input Qty	Input cost (₹)	saved with NICRA (₹)
		Fertilizer (kg)	210 kg	3150	300	4500	1350
		Water (Litre)	416 mm	5000	656	8000	3000
	Demonstrati	Labour (man days)	90	36000	110	44000	8000
7	on on Drip	Pesticide (kg or L)		3000		4000	1000
	irrigation in Okra	Seed (kg)	8 kg	8000	10 kg	10000	2000
	OKIA	Feed (q)					
		Compost (t)	7 ton/ha	5500	2.5 ton/ha	2500	
		Fertilizer (kg)		1000		500	
		Water (Litre)	1 sprinkler irrigation	1000			
	INM in	Labour (man days)	45	18000	50	20000	2000
8	Greengram,	Pesticide (kg or L)		500		1000	500
		Seed (kg)	25 kg	2500	30 kg	3000	500
		Feed (q)					
		Compost (t)					

Input Distribution

Short duration Greengram var. Virat

Dhaincha Greengram

Input Distribution

Fruit saplings

Poultry breed Vanaraja

Input Distribution

Salt & submergence tolerant varieties of rice

Hybrid Napier

Recycling of byproducts details

Climate Resilient Technology		By product	By Quantity recycled (q) product					
	product	produce d (q)	As feed/ fodde r	As crop residu es	As compost/vermi compost	Sold	Others (like mushroom productio n)	ed (if the by product is sold) (₹)
Paddy straw mushroom production and Vermicompostin g	Paddy straw	60	30	05	20	15	5	30000

Recycling of byproducts

Vermicomposting

Paddy straw mushroom cultivation

Straw mulching in turmeric

Details of formation of VCRMC & other institutions

S. No	Name	Details	Details of Institution performance				
		Date of Formation (DD/MM/YYYY)	No. of villages covered	No. of member s	No. of meetings	Total Revenue generated since inception	Funds available as on date
1	VCRMC	2021	1	20	66		
2	CCRMC (Cluster Climate Risk Management Committee)	-	-	-	-	-	-
3	СНС	2021	1	20	60	76250	25/10/2025
4	Fodder Bank	2023	1	1	0	2000	
5	Seed Bank	2022	1	20	15	8000	
6	Grand total Revenue generated					Rs.86,250	25/10/2025

Performance of Custom Hiring Center

S.No.	Name of Implement	Operationa I in area (ha)	No. of farmers utilized the equipment	Amount generated as revenue (₹)	Remarks
	Power weeder	10	34	11400	
	Rotavator	22	32	23200	
	Water pump	245	17	8750	
	Post Hole digger			1500	
	Mini rice mill	341	202	8900	
	Paddy Thresher cum winnower	225	17	5910	
	Power Sprayer	305	45	2450	
	Pulse thresher	243	135	9200	
	Paddy transplanter	21	47	4940	
Total am	ount generated sind	76250	Till 25/10/2025		

Mini Rice Mill

Power Weeder

Paddy Thresher

Battery Sprayer

Delegates visit to CHC

Seed banks in NICRA villages

S. No.	Name of the village	Crop	Variet y	a	No. of farmer s involve d	Quanti ty produc ed (q)	Quantit y of seed utilized (kg)	Quantit y of seed sold (kg)	Revenue generat ed by selling (₹)
1	Achhuta daspur	Paddy	Swarna Sub-1	7		339.5	339.5	1.2	4800
2	Achhuta daspur	Paddy	Luna Suverna	3		112.5	112.5	1.0	4000

Fodder banks in NICRA villages

S. No.	Village name	Fodder	Variety	Area (ha)	No. of farmers involved	Quantit y produce d (q)	Quantit y of fodder utilized as feed (q)	Quanti ty of fodder sold (q)	Revenu e genera ted by selling fodder (₹)
1	Achhutad aspur	Hybrid Napier grass	CO3	0.8	15	21	1500	1500	

Strategies adopted for year round supply of fodder

Year round fodder supply	Strategies adopted
Hybrid Napier +Azolla	Hybrid Napier cultivation in waste land, Azolla in Poly
	Tanks

Capacity Building and other extension programmes taken up on climate resilient technologies

Thematic area	No. of		No. of beneficiaries			Feedback from
	program mes	Male	Female	From	То	farm ers
Natural resource management	10	205	95	2021	2025	
Crop and cropping systems	18	379	161	2021	2025	
Horticulture	5	51	99	2021	2025	
Livestock	8	234	126	2021	2025	
IFS	3	60	30	2021	2025	
Institutionalization and miscellaneous	7	87	123	2021	2025	
Total	51	1016	634			

Training Programme

Extension Activities

Farmers day Dt-23.04.2023

Gramin Mausam Seva meeting

Women in Agriculture Day Dt-04.12.2022

Swacha Bharat Program

Extension Activities

स्ति विश्व । A service of the servi

VKSA-Pre-kharif campaign

VKSA- Ratha

PM-DDKY 2025

Animal Health Camp

Exposure visit

OUAT Agri Fair 18.02.2025

Awareness on PPVFRA at CIFA 25.03.2025

KVK Puri 01.06.2023

Technology spread through up scaling & details of convergence

Name of the climate resilient technology	Area (ha) (initial Adoption with the technology)	Initial farmers (No)	Area (ha) (Adoption with the technology after scaling up)	After scaling up farmers (No)	Convergen ce with agency/ scheme	Approx. amount (₹) mobilized
Submergence tolerant Rice Variety	02	10	25	120	Department of Agriculture, Odisha	
Salt tolerant Rice Variety	_	_	10	50	Department of Agriculture, Odisha	
Green manuring with Dhaincha	<u>-</u>	-	35	180	Department of Agriculture, Odisha	
Greengram after Rice under Rice- Fallow management	10	46	20	130	Department of Agriculture, Odisha	
Coconut Plantation	1	26	3	250	Department of Horticulture,	

Convergence Activities

AICRP on Plantation crop

IIWM, Bhubaneswar

All India Network Project on Soil Biodiversity-Biofertilizer

Suggest the measures to upscale the technologies

- Cluster-based Demonstrations: Proven technologies may be demonstrated in cluster approach for better Impact
- Institutional Strengthening: Empowering FPOs and SHGs, for technology dissemination, asset management, and local capacity building.
- > Strengthening of custom hiring Centre: Providing an Implement shade and addition of high end machines beyond 2.5 lakh limit can enhance visibility, focus should be given on popularization of processing machines
- Addition of Drone in Custom hiring centre: Drone may be purchased for custom hiring centre and some farmers may be trained as drone pilot
- > Specialized Training: Some Farmers from the NICRA Village may be Trained at Central Farm Machinery Training and testing Centre at Budni or Hisar for better skill
- Proper Design of NRM structures: DSS may be developed for positioning, scientific design and estimate of the structure.
- ➤ Convergence Support: Convergence with line departments Agriculture, Fisheries, Horticulture, Watershed, and Renewable Energy may be made at district, state and National level for NICRA village and there should be some policy.
- ➤ **Digital & Advisory Services:** Real Time local weather-based advisories, AWS may be established in NICRA village, ICT-enabled extension, and market linkages for timely decision-making is required.

Issuance of agro advisories

Whether agroadvisories are being issued: Yes

Source of forecast: IMD, DAMU

No. of farmers covered: 400;

No. of farmers followed agro-advisory:_250

who is preparing agro-advisory: Scientists/SMS

No. of Agromet advisories issued	Date
450 number	Every Tuesday and Friday by Gramin Krishi Mausam Sewa, Odisha University of Agriculture and Technology

Publications

SI. No.	Title	Type of publication(Researc h article/Review article/leaflets/folder s/popular article/abstracts/exte		Website link
1	Mapping of Soil Fertility Status in a Coastal Village of Odisha Using Geospatial Technology	Article (2023)	International Journal of Plant & Soil Science, 35(23), 368-379. Article no.IJPSS.110265, ISSN: 2320-7035	https://journal ijpss.com/ind ex.php/IJPSS/ article/view/4 252/8403
2	Integrated Climate- Resilient Practices for Enhancing Yield and Water Productivity of Rice in Rainfed Saline-Affected Coastal Ecosystem of Odisha, India	Article (2025)	Agriculture International,	https://www.j ournaljeai.co m/index.php/J EAI/article/vi ew/3855/885

Photographs of first page of publication

International Journal of Plant & Soil Science

Volume 35, Issue 23, Page 368-379, 2023; Article no.IJPSS.110265

Mapping of Soil Fertility Status in a Coastal Village of Odisha Using **Geospatial Technology**

Pradipta Majhi a, Prasannajit Mishra b, Jibanjit Sen a, Dwarika Mohan Das a. Amit Phonglosa b. Debasis Panda a. Hemanta Kumar Sahoo b and Pravat Kumar Roul b

a Krishi Vigyan Kendra, Jagatsinghpur, Odisha University of Agriculture and Technology,

Directorate of Extension Education, Odisha University of Agriculture and Technology. Bhubaneswar, Odisha 751003, India.

This work was carried out in collaboration among all authors. All authors read and approved the final

Article Information

Authors' contributions

DOI: 10.9734/IJPSS/2023/v35i234252

Open Peer Review History: This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here https://www.sdiarticle5.com/review-history/110265

Original Research Article

Received: 10/10/2023 Accepted: 14/12/2023 Published: 21/12/2023

ABSTRACT

The most fundamental decision-making tool for sustainable soil nutrient management is the assessment of soil fertility in a region. During 2021, a soil fertility status inventory was prepared through National Innovations on Climate Resilient Agriculture (NICRA) project in Achyutadaspur village of Jagatsinghpur district. Odisha, A total of 125 surface soil samples were randomly collected from a depth of 0-15 cm with GPS locations and soil parameters like pH, electrical conductivity, organic carbon, available N, P, K, S, Zn, and B were evaluated using standard analytical procedures. GIS maps have been prepared using ArcGIS software based on the analysis report. The majority of the soil was found acidic around 62.4% area of the village, followed by

*Corresponding author: E-mail: soilamit12@rediffmail.com,

Int. J. Plant Soil Sci., vol. 35, no. 23 pp. 368-379, 2023

Journal of Experimental Agriculture International

Volume 47, Issue 11, Page 124-134, 2025; Article no.JEAI.147065 (Past name: American Journal of Experimental Agriculture, Past ISSN: 2231-0606)

Integrated Climate-Resilient Practices for Enhancing Yield and Water Productivity of Rice in Rainfed Saline-Affected Coastal Ecosystem of Odisha, India

Dwarika Mohan Das a*, Pradipta Majhi a, Jibanjit Sen a, Debasis Panda a, Sarita Das a, Sasmita Purohit a, Tapan K. Palai a++, Balia Majhi a, P.J. Mishra b, A. Phonglosa b, S. K. Mondal c and S.L. Ray

^a Krishi Vigyan Kendra, Jagatsinghpur, OUAT, Manijanga, Jagatsinghpur, Odisha-754160, India. b Directorate of Extension Education, OUAT, Bhubaneswar-751003, India.
CICAR-ATARI Kolkata, Zone V, Salt Lake City, Kolkata-700097, West Bengal, India. Department of Soil and Water Conservation Engineering, CAET, OUAT, Bhubaneswar-751003,

Authors' contributions

This work was carried out in collaboration among all authors. Authors DMD designed the study, supervised the field experiments and prepared the manuscript. Authors PM conducted the soil analysis and interpreted the soil health parameters. Author JS provided technical guidance and overall supervised the study. Author DP managed crop protection aspects and collected the data.

Authors BM, SD, SP and TKP assisted in field experimentation and data compilation. Author PJM provided institutional support and guidance. Author AP contributed to technical planning and interpretated the data. Author SKM facilitated technical inputs and reviewed the manuscript. Author SLR did statistical analysis and refinement of the manuscript. All authors read and approved the final

Article Information

DOI: https://doi.org/10.9734/jeai/2025/v47i113855

This journal follows the Advanced Open Peer Review policy, Identity of the Reviewers, Editor(s) and additional Reviewers, pee review comments, different versions of the manuscript, comments of the editors, etc are available here https://pr.sdiarticle5.com/review-history/147065

*Corresponding author: E-mail: dwarikamdas@ouat.ac.in;

Cite as: Dwarika Mohan Das Pradinta Malhi, lihaniit Sen Dehasis Panda Santa Das Sasmita Purohit Tanan K. Palai, Ralia Cite dis J Walliari Montal Tous, relatifyi wajani, sicanji celar, pedasis ramia, sania bas, salamia relomi, rajani n. rana, Majih. P.J. Mishra. A. Phongjesa, S. K. Mondai, and S.L. Ray, 2025. "Integrated Chimsto-Resilieni Practices for Enhancian and Water Productivity of Rice in Rainfed Saline-Affected Coastal Ecosystem of Odisha, India". Journal of Experimental Agriculture International 47 (1):144–134. https://doi.org/10.1973/ejae/2025/v47113855.

HOLISTIC MANAGEMENT OF COASTAL SALINE SOIL: A CLIMATE RESILIENT APPROACH

D. M. Das, P. Maihi, I. Sen*, D. Panda, S. Purohit and S. Das Krishi Vigyan Kendra, Jagatsinghpur-754160 Odisha University of Agriculture and Technology, Bhu banesway *Email: kvkjagatsinghpur.ouat@gmail.com

Coastal regions are increasingly vulnerable to the impacts of climate change which is exacerbating the revised practices revealed significant improvements in challenges faced by agricultural ecosystems (Aggarwal et al., 2019, ICAR-CSSRI, 2018). The district of Jagatsinghpur, located along the Odisha coastline, is experiencing rising soil salinity due to frequent saline water flooding during high tides and the intrusion of seawater into inland aquifers. This has led to an increase in the capillary rise of saline groundwater which is increasing soil salinity and threatening agricultural productivity (Das et al., 2018). The traditional rice-based farming system in this region is facing significant stress with the declining yield and less economic return. The National Innovations in Climate Resilient Agriculture (NICRA) Project, operational under the Krishi Vigyan Kendra (KVK) in Jagatsinghpur, has initiated targeted interventions to address these challenges and promote sustainable agriculture. This study was conducted in a saline-affected village namely Achyutdaspur in Erasama Block of Jagatsinghpur district under the NICRA-TDC project with an aim to evaluate the effectiveness of revised agricultural practices for enhancing rice yield and economic returns in comparison to the traditional practice.

The study implemented a series of interventions designed to counter the adverse effects of soil salinity and enhance the resilience of the coastal rice-based ecosystem. The revised practice included deep ploughing to break the hard pan layer formed due to the shallow tillage and heavy machinery operation which restricts the natural percolation of fresh rain water. This was followed by the cultivation of Dhanicha (Sesbania rostrata) as a green manure crop before rice planting. Dhanicha cultivation not only improved the soil health by adding organic matter but also reduced the soil salinity through leaching salt by rupturing the hard pan kyer through its deep root system. The revised practice also incorporated the use of salt-tolerant rice variety Luna agricultural strategies across similar vulnerable regions. Suvarna (CR LC2096-71-2) which has a high tolerance to saline soil conditions. Furthermore, rainwater harvesting was emphasized through construction of farm ponds for supplemental irrigation during the dry spells and also helped to dilute soil salinity

In contrast, the traditional practice in the region in volved the use of local rice varieties with low tolerance to salinity, minimal land preparation and reliance on natural rainfall to meet the crop water requirement. This approach often resulted in poor crop performance and low economic returns due to the high soil salinity and rainfall variability.

The comparative analysis between the traditional and agricultural outcomes under the revised interventions. The adoption of deep ploughing, green manuring and the use of Luna Suvarna rice variety coupled with supplemental irrigation from farm pond has led to substantial increases in crop yield net profit and the benefit-cost benefit (B:C) ratio. The findings are summarized in the Table 1.

Table 1: Comparison of farmers' practice and revised

practice						
Treatment	Yield (q/ha)	Net Profit (Rs/ha)	B:C Ratio			
Farmers' Practice (FP	32.5	19500	1.37			
Revised Practice (RP)	42.7	32400	1.54			
CD at 5%	8.6					

The revised practices significantly outperformed the traditional methods, demonstrating a higher yield and better economic returns. The implementation of these practices under the NICRA-TDC project highlights the potential for improving the sustainability and resilience of coastal agricultural system in the face of climate change and increasing soil salinity

The study underscores the critical importance of adopting climate-resilient agricultural practices to combat the growing threat of soil salinity in coastal regions. The interventions implemented under the NICRA-TDC project in Achyutdaspur village have shown promising results, offering a viable pathway to enhance the productivity and sustainability of coastal rice-based ecosystems. As climate change continues to intensify, it is imperative to scale up these practices and support the broader adoption of resilient

Aggarwal, P.K., Joshi, P.K., Rao, P.S., and Singh, R.K. (2019). "Climate Change and Indian Agriculture: Impacts, Adaptation, and Mitigation." Indian Council of Agricultural Research.

Das, S., Prasad, R., Gupta, P.K., and Sinha, A.K. (2018). "Resilient Agricultural Practices for Coastal Regions of India." Agriculture, Ecosystems & Environment, 259, 136-145,

ICAR-CSSRI (2018), "Management of Saline Soils and Waters in India," Central Soil Salinity Research Institute.

Extended Summaries 191

Photographs of first page of publication

OUAT Publication No. 2024110361

କୃଷି କାର୍ଯ୍ୟରେ ଡ୍ରୋନ୍ର ବ୍ୟବହାର

ଦ୍ୱାରିକା ମୋହନ ଦାସ ପ୍ରଦୀପ୍ତ ମାଝୀ ଦେବାଶିଷ ପଣ୍ଡା ବିଛିନା ମୈତ୍ରୀ ରାଉତ ଜୀବନଳିତ୍ ସେନ

କୃଷି ବିଜ୍ଞାନ କେନ୍ଦ୍ର, ଜଗଡିସ୍ଥିତପୁର ଓଡ଼ିଶା କୃଷି ଓ ବୈଷୟିକ ବିଶ୍ୱବିଦ୍ୟାଳୟ, ଭବନେଶ୍ୱର

International Conference on Rainfed Agriculture: Building Pathways for Resilience & Sustainable Livelihoods during 29-31, January 2025 at ICAR-CRIDA, Hyderabad

UID: 1241

NICRA Initiatives for Sustainable Agriculture in Rainfed Saline-Affected Coastal Rice Belt of Jagatsinghpur District of Odisha

¹Dwarika Mohan Das, ²Pradipta Majhi, ³Jibanjit Sen, ⁴Debasis Panda, and ⁵ Bichhinna Maitri Rout

> ³Scientist, Agricultural Engineering ²Scientist, Soil Science ³Senior Scientist and Head ⁴Scientist, Plant Protection

³Senior Research Fellow, NICRA-TDC Project, Krishi Vigyan Kendra, Jagatsinghpur, Odisha University of Agriculture and Technology, Bhubaneswar kvkjagatsinghpur.ouat@gmail.com

Coastal rice belts, particularly in rainfed saline-affected regions, face significant challenges due to climate change and increasing soil salinity. In these areas, rising salinity, frequent seawater intrusion and limited freshwater availability threaten traditional agricultural practices. This study evaluates sustainable agricultural practices tailored to enhance the productivity and resilience of rainfed saline-affected coastal rice belts. The interventions aim to improve soil health, crop yields, and economic returns for smallholder farmers. Coastal regions are increasingly vulnerable to the impacts of climate change which is exacerbating the challenges faced by agricultural ecosystems (Aggarwal et al., 2019, ICAR-CSSRI, 2018). The district of Jagatsinghpur, located along the Odisha coastline, is experiencing rising soil salinity due to frequent saline water flooding during high tides and the intrusion of seawater into inland aquifers. This has led to an increase in the capillary rise of saline groundwater which is increasing soil salinity and threatening agricultural productivity (Bhattacharyya et al., 2015, Das et al., 2018). The traditional rice-based farming system in this region is facing significant stress with the declining yield and less economic return. The National Innovations in Climate Resilient Agriculture (NICRA) Project, operational under the Krishi Vigyan Kendra (KVK) in Jagatsinghpur, has initiated targeted interventions to address these challenges and promote sustainable agriculture. This study was conducted in a saline-affected village namely Achyutdaspur in Erasama Block of Jagatsinghpur district under the NICRA-TDC project with an aim to evaluate the effectiveness of revised agricultural practices for enhancing rice yield and economic returns in comparison to the traditional practice.

Methodology

The study was conducted in saline-affected areas with rainfed conditions, where traditional practices struggle to cope with high salinity and erratic rainfall. Revised practices included deep ploughing to improve soil permeability, cultivation of salt-tolerant rice varieties, and implementation of integrated water management strategies such as rainwater harvesting. The

Awards

Sl. No.	Awarded for	Award received from Organisation	Date
	Adopting climate smart agril. Practices	In OUAT Agri fair-2025	18.02.2025
	J	<u> </u>	

Thank you

Example for FST-I module

Cropping systems technology: improved varieties of maize and red gram intercropping systems

Crop/perennials	Climate vulnerabilit y	Season	Crop stage affected	Technology demonstrated	Area (ha)	Productivity (q ha ⁻¹)	Crop equivalent yield (q ha ⁻ ¹) (System productivit v)	System net returns (₹ ha ⁻¹)	
Normal year (avera	ge of 2022-25)	•	•		•	•			
NICRA Farmers	Drought	Kharif	Flowering	(i) Maize + redgram intercropping	1.0	Maize 20 q and Redgram 3.1 q	30.5	26600	
Non-NICRA Farmers	Drought	Kharif	Flowering	(i) Maize sole	1.0	Maize 18.8 q	18.8	15400	
Stress year (2021 dr	ought year)								
NICRA Farmers	Drought & dry spell	Kharif	Seedling and flowering	(i) Maize + redgram intercropping	1.0	Maize 18.2 q and redgram 2.3 q	26.0	23440	
Non-NICRA Farmers	Drought & dry spell	Kharif	Seedling and flowering	(i) Maize sole	1.0	Maize 15.2 q	15.2	12000	
Details of technology	Improved drought tolerant maize variety Dekalb and pigeonpea variety TS-3R and supplemental irrigation through Jalkund								
Farmers practice	Use of traditional varieties								

Formula for calculation of crop equivalent yields

Calculation of crop equivalent yield:

Yield of maize is 20q and yield of red gram is 3.1q

Price of maize ₹ 2225 q⁻¹ and price of red gram ₹ 7550 q⁻¹

Maize equivalent yield (MEY) = Yield (maize crop) +
$$\frac{\text{Yield of red gram} \times \text{price of red gram}}{\text{Price of maize}}$$

MEY (q ha⁻¹) = 20 + (3.1×7550) = 30.5 q ha⁻¹

2225

By products produced and recycled:

Interve	ntions	Name of by-product produced	Quantity (t ha ⁻¹)	Selling price (₹ q ⁻¹)	Use of by-product*	Quantity recycled (t)	Amount mobilised (₹)
	NICRA	Maize and red gram stalks	5.2	20	Used as mulch	5.2	-
Crops	Non-NICRA	Maize	4.6	20	Used for fuel wood	Nil	-

* Crop by products use

a. Agriculture: Mulching/ compost etc.

b. Animals: Feed to cattle
c. Other enterprises: mushroom cultivation, selling etc.

*Animal by product use a. Dung: cre

a. Dung: crop, biogas etc.

b. Feed waste: FYM, crop etc.

Example for FST-II module

Crops and livestock: Finger millet and red gram intercropping systems and 1 buffalo

Crop/perennials	Climate vulnerability	Season	Crop stage affected	Technology demonstrated	Area (ha)	Productivity (q ha ⁻ 1) (lit animl ⁻¹)	Crop equivalent yield (q ha ⁻¹) (System productivity)	Net returns (₹ ha ⁻¹) (₹ animal ⁻¹)
Normal year (average of	2021 to 2023)					<u>'</u>		
		Kharif	Flowering	Finger millet + redgram intercropping	1.0	Finger millet 16.5 q and redgram 0.7 q	17.9	42145
NICRA Farmers	Drought	Kilaili	Milk production	Mineral mixture supplementation in buffalo	1 no.	3730	Crop equivalent yield (q ha ⁻¹) (System productivity) 17.9 4: 17.0 4:	91090
		products	Used as mulch and manur	e				-
Total FST-II System produ	ıctivity							1,33,235
	Drought K		Flowering	Finger millet monocropping	1.0	Finger millet 12.5	12.5	24915
Non-NICRA Farmers		Kharif	Milk production	No nutrient supplementation in buffalo	1 no.	3280	3280	63000
	Income from by products							
Total FST-II System returi	ns							1,22,215
Stress year (2024 drough	t year)							
	Drought & dry spell Khar	//howif	Seedling and flowering	Finger millet + redgram intercropping	1.0	Finger millet 14.5 q and redgram 0.4 q	15.3	33683
NICRA Farmers		Knarif	Milk production	Mineral mixture supplementation in buffalo	1 no.	3630	3630	88050
	Income from by products Used as mulch and manure							
Total FST-II System returi	ns							1,21,733
	Drought & dry	& dry Kharif	Seedling and flowering	Finger millet monocropping	1.0	Finger millet 9.3	9.3	12608
Non-NICRA Farmers	Drought & dry spell Khar		Milk production	No nutrient supplementation in buffalo	1 no.	2800	2800	53700
Income from by products 30								30300
Total FST-II System productivity 96,6								96,608

Calculation of crop equivalent yield:

Yield of finger millet is 16.5 q and red gram is 0.7 q

Price of finger millet ₹ 3846 q⁻¹ and price of red gram ₹ 7550 q⁻¹

Finger millet equivalent yield (FEY) = | Yield (finger millet crop) +

Yield of red gram × price of red gram

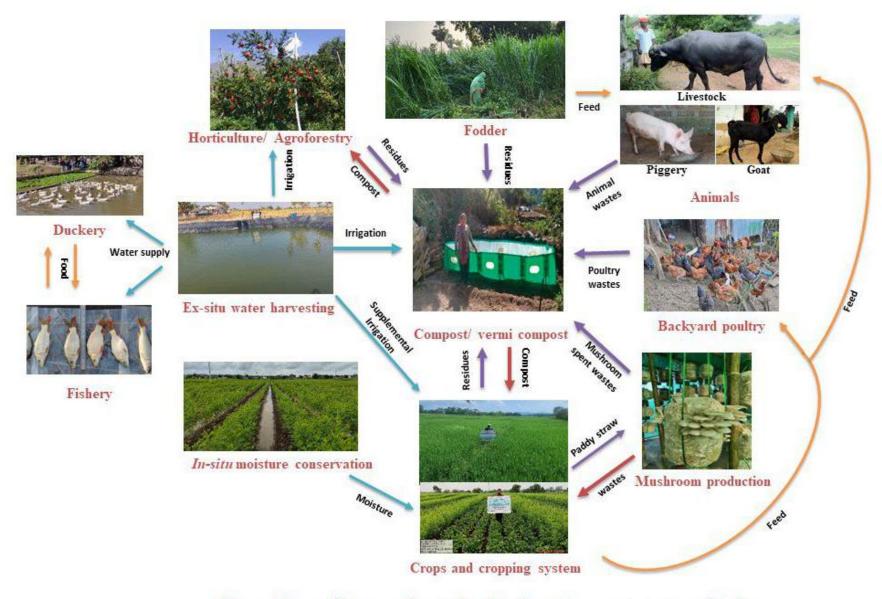
Price of finger millet

FEY (q ha⁻¹) =
$$16.5 + (0.7 \times 7550) = 17.9$$
 q ha⁻¹ 3846

By products produced and recycled

	Interventions	Name of by-product produced	Quantity (t ha ⁻¹)	Selling price (₹ q ⁻¹)	Use of by-product *	Quantity recycled (T)	Amount mobilised (₹)
Crops	NICRA	Finger millet and red gram stalks	5.4	20	Used as mulch	5.4	-
_	Non-NICRA	Finger millet	3.6	20	Used for feed	Nil	-
T :41-	NICRA	Feed and solid wastes	5.5	700	Used as manure	5.5	-
Livestock	Non-NICRA	Feed and solid wastes	4.9	700	Used for sale	Nil	34300

* Crop by products use _a. Agriculture: Mulching/ compost etc.


b. Animals: Feed to cattle

c. Other enterprises: mushroom cultivation, selling etc.

*Animal by product use

a. Dung: crop, biogas etc.

b. Feed waste: FYM, crop etc.

Recycling of by products in the farming system typologies

MSP list of different commodities

Commodities	Price
Milk	Cow- ₹40 L ⁻¹ Buffalo- ₹ 50 L ⁻¹
Meat rate	Sheep- ₹ 850 kg ⁻¹ Goat- ₹ 100 kg ⁻¹ Poultry- Broiler (₹ 200 kg ⁻¹) and Splint birds (₹ 150 kg ⁻¹)
Egg	₹ 6 egg-1
Compost	₹ 20 kg ⁻¹
Dry fodder	₹ 3 kg ⁻¹
Green fodder	₹ 2 kg ⁻¹
Fish	₹ 100 kg ⁻¹
Mushrooms	₹ 250 kg ⁻¹

Commodity	Variety	MSP (₹ q ⁻¹)
Kharif crops		
D 11	Common	2300
Paddy	Grade 'A'	2320
T	Hybrid	3371
Jowar	Maldandi	3421
Bajra		2625
Ragi		4290
Maize		2225
Tur (arhar)		7550
Moong		8682
Urad		7400
Groundnut		6783
Sunflower seed		7280
Soyabeen (yellow)		4892
Sesamum		9267
Nigerseed		8717
C-#	Medium Staple	7121
Cotton	Long Staple	7521
Rabi crops		
Wheat		2425
Barley		1980
Gram		5650
Masur (lentil)		6700
Rapeseed &		5950
mustard		3930
Safflower		5940
Toria		5950
Commercial crops		
Conra (colondor vecr)	Milling	11160
Copra (calendar year)	Ball	12000
De-husked coconut		3013
(calendar year)		3013
Jute		5335

Micro-sprinkler irrigation from farm pond

